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Abstract— Explicit solutions of the stress intensity factors due to non-elastic strains and body forces
are obtained for a crack extending dynamically at steady state through an anisotropic elastic body.
The examples of non-elastic strains include thermal expansion, phase transformation, initial strains.
plastic strains, etc. Specific results are given for creeping materials. a uniform distribution of
transformation strains, and discrete dislocations. It is shown that the stress intensity fuctors of
tractions applied on the crack faces are independent of the crack velocity and the elastic constants.

L. INTRODUCTION

In this paper stress intensity factors due to non-clastic strains and body forces are derived
for a dynamic crack in a lincar anisotropic clastic body. The term “non-clastic strain™ is
cquivalent to the stress-free transformation strain introduced by Esheiby (1957). However,
non-clastic strain is adopted here in a broader context to denote such strains as thermal
strain, transformation strain, plastic strain, and misfit strain. A characteristic feature of
non-clastic strains is that they can all be expressed as the difference between a total strain
and an elustic strain, The total strains are derived from continuous displacements while the
clastic strains ure related to the stresses through Hooke's law. As was illustrated by Eshelby
(1957), the presence of such non-clastic strains in an elastic body causes a self-equilibrated
internal stress or self-stress to occur. One may therefore regard non-clastic strains as sources
of self-stress in an elastic body.

If a growing crack exists in a body containing non-¢lastic strains, the crack tip would
be loaded by the self-stress due to the non-elastic strains in addition to the stress applied
by the external loading. Under appropriate conditions regarding the distributions of non-
clastic strains which will be discussed in the sequel, the self-stresses exhibit the universal
crack-tip fields associated with a crack propagating through a linear elastic material. The
crack-tip self-stress fields are characterized by a stress singularity of "2, r being the radial
distance from the moving crack tip and by the stress intensity factors. The stress intensity
fuctors are functions of the non-elastic strains and are important parameters in describing
the interactions between the non-elastic strains and the crack tip. For example, it the non-
elastic strains are identified as the transformation strains due to phase transformation of
zirconia particles in a ceramic matrix, the stress intensity factors represent the apparent
toughness enhancement of the zirconia particles (Evans and Heuber, 1982 ; Budiansky et
al.. 1983). In the case of plastic strains, the stress intensity factors characterize the stress
reliet effects by plastic flowing (Wu and Hart, 1987 Freund and Hutchinson, 1985).

In the aforementioned analyses, the derivations are cither based on the application of
the weight function method of Bueckner (1970) and Rice (1972). or by direct stress cal-
culations. Furthermore, almost all the available results arc applicable to quasi-static crack
growth in an isotropic solid. The objective of the present study is to obtain general explicit
expressions of the stress intensity factors due to non-clastic strains that are valid for dynamic
crack extension through an anisotropic material. The stress intensity factors due to body
forces are also considered since the derivation involved is essentially the same. The deni-
vation will be carried out without solving the complete self-stresses due to the non-clastic
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Fig. 1. A crack propagating dynamically at steady state in the presence of non-elastic strains and
body forces.

strains and the body forces. Instead, the energy balance of the system containing the crack,
the non-elastic strains, and the body forces is utilized to yield the solutions.

The plan of the paper is as follows. In Section 2, the underlying assumptions and the
formulation of the problem concerned are given. The derivation of the stress intensity
factors is shown in Section 3. Specific results are given in Section 4 for creeping materials,
a uniform distribution of transformation strains, discrete dislocations and a point force
acting on the crack face.

2. PROBLEM STATEMENT

In the following discussions, the summation convention over repeated indices is
adopted unless otherwise noted. All indices range from 1 to 3.

In this study, it is assumed that the body forces are distributed near the tip of a
dynamically extending crack in a region with dimensions much smaller than the crack
length. For non-clastic strains, however, the assumption is slightly modified. The non-
clastic strains are assumed to exist in a region extending along the crack flanks. The height
of the zone of non-elastic strains is assumed to be small compared with the crack length.
This assumption for the non-elastic strains stems from the concept of “*small scale trans-
formation™ (Budiansky er al., 1983) and “small scale creeping”™ (Wu and Hart, 1987).
Under these conditions, a wake of non-zero non-elastic strains is left behind the advancing
crack tip. The body forces and the non-elastic strains are further assumed to translate with
the crack tip at steady state. Under such assumptions, the problem can be formulated as a
semi-infinite crack extending dynamically at velocity ¢ in an infinite body as shown in Fig.
1, where a moving coordinate system (x, y) is attached to the crack tip and the crack is
assumed to coincide with the negative x-axis. The non-elastic strain, &™, and the body force,
f, in the cracked body are functions of x and y such that with respect to an observer at the
moving crack tip the distributions remain unchanged. The magnitude of the body forces
approaches zero as r — oc. The magnitude of the non-elastic strains also approaches zero
as r — co except behind the crack at x — — oo where the non-elastic strains may be nonzero
for finite values of y.

In the context of the theory for small deformation, the total strain e, is expressed as
the sum of the non-elastic strain g and the elastic strain e. Namely

(.'”+€}7’ = &y (I)
where the total strain is given by
&y = 5(“..;"*""/.1) 2

where u is the displacement and a comma denotes differentiation. Corresponding to the
elastic deformation, a stress, o, is generated according to Hooke's law
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Gy = Cjui€u 3
where C is the elasticity tensor. The stresses also satisfy the equilibrium equations

2 0%u,
oyt fi=pdi 53 @

where p is the density, and the term on the right-hand side represents the inertial force.
Equations (1)—(4) constitute the set of governing equations for the elasticity problem of
determining the stresses and the displacements for given distributions of non-elastic strains
and body forces. The set of equations must be supplemented by the traction-free conditions
on the crack faces

0:=0 ()

and appropriate far-field conditions. Consistent with the assumptions stated previously, the
stress remote from the crack tip is taken as (Freund, 1980 ; Budiansky et al., 1983 ; Wu and
Hart, 1987)

6=06"+d" as r- o (6a)

where 6 is the applied singular stress ficld for a dynamic crack in an clastic anisotropic

material subject to the same external loading but neglecting the body forces and non-elastic
strains and ¢ is the residual stress due to the non-vanishing non-clastic strains in the wake.

The corresponding far-ticld displacement can be expressed as

u=u"+u" (6b)

where u™ is the displacement for 6™ and u'” is the displacement for a7, The upplied singular
(a) ¢

is given as (Wu, 1987)

stress o

where 6 is given by
] ! 9?[:( 1° A B,)B, ! ] (8a)
0', ¢ = T LA as. a— PaPix b o é
tq \/(27[) /) p q \/:’
1 1
G2y = ~——— A#| B,B, —-—]. 8b
Y J@2n) [ NEVE (80)

In egns (8a) and (8b) A, B are complex matrices and p is a complex vector determined by
the clasticity constants ; =, = x+ip,y, a varies from | to 3 and # denotes the real part. The
procedure for determining A, B, and p from the elasticity constants can be found in
Appendix A. The applied stress intensity factor k™ is determined for the actual geometry
of the cracked body at a given external load in the absence of the body forces and the non-
clastic strains. Note that since the applied stress is obtained by disregarding the non-elastic
strains, the clastic strain ¢ associated with the applied stress is the same as the total strain,
ic.

e = 4 +ul). (8¢c)

The residual stress o' is determined by the following conditions:
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cul”
=0 (9a)
cx
gt = 0. (9b)

Equation (9a) is imposed to insure the satisfaction of the steady-state conditions as
x — —x for the displacements u'” associated with the residual stresses. The residual
stresses consistent with the above conditions at x — — x can be shown to be

o = (C:lpZTr_/‘C/lk/—C:ikl)atr[”(,v) (10)

where T,, = C,,,» and T is the inverse matrix of T. §™(3) is the non-elastic strain as
X = — . The derivation of eqn (10) is given in Appendix B. Inspection of eqns (1)
and (4) reveals that the existence of the remote stress fields (6a) implies that the non-elastic
strains and the body forces must vanish faster than r ' “and r *° respectivelv. as r — «
except v — — . As ¥ — — 1, the non-elastic strains may be nonzero for finite values of
v but must decay to zero faster than |y ' “as vy — + .

Note that the stresses and the displacements of the problem outlined above are com-
binations of lincar functions of the elastic stress intensity factor k"', the non-elastic strain
™, and the body force, f. The stresses and the displacements can thus be expressed as

6=0a"+a" (1

u = u" 4 (11h)

where u™ and ™ are the displacement and the stress due to k™ only and u™ and ¢ are
the displacement and the stress induced by the non-elastic strains and the body forees. By
definition, the stress ' is the stress in the absence of the non-clastic strains and the body
forces and theretore is the same as the clastic singular ficld given by eqn (7). The dis-
placement associated with the elastic singular stress field, o', is given as (Wu, 1987)

W = kL (12)

where

9
l;“l = \/(;>‘”[A418141\/::]' (|3)

The problem one is concerned with here is that for which the stresses near the crack
tip have the same form as eqn (7) except that the amplitude will in general be ditferent, i.c.

a, = U!/qkq

(14)
where k is the local stress intensity factor. The existence of the local crack-tip ficlds requires
that the non-elastic strains and the body forces become unbounded more slowly than r ' ?
and r~¥3, respectively, as r — 0. Equations (11a) and (14) imply that as r — 0, the stress
induced by the non-clastic strains and body forces g also has the form of eqn (7) with the
amplitude k™ given by

K = k—k“, (15)

The objective is to determine the dynamic stress intensity factor k™ due to the non-
elastic strains and the body forces. Of course the objective can be accomplished by going
through the tedious process of deriving the complete stress fields from the governing
equations and analyzing the asymptotic behavior of the stresses near the crack tip. One
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Fig. 2. Thecontour T =T v, uC'uC.

shall, however. adopt a simpler approach that allows the stress intensity factors to be
obtained without actually solving the governing equations.

3. STRESS INTENSITY FACTORS DUE TO NON-ELASTIC STRAINS AND BODY FORCES

Consider a contour integral J” defined by

. . u
o= | Ty dy—g, S (16)
T (EAY

where W is the elastic strain energy density, 7 the kinetic energy density, and t the traction
on I'. The integral J7 is an extended form of the path integral introduced for quasi-static
crack growth in clastic -viscoplastic materials (Wu and Hart, 1987). A similar integral was
proposced by Freund and Hutchinson (1985) by replacing the clastic strain energy density
with the total strain energy density. Let =T, U F,u C" U C7 be the path as shown in
Fig., 2, where 1) and Iy are circular paths with radit R, and R, and ¢ and ¢ are the
upper and the lower crack faces between R, and R, Applying the divergence theorem to
eqn (16) and enforcing eqns (1) and (4) gives

’ ou, e
Ji-J) = J (j,' ‘i—— -0, 1—'—»-) dA (17)
p \7' Ox Ox

where D is the region bounded by " and J'| and J% are the values of J” evaluated over I
and [, respectively, in a counterclockwise sense. Integration over C* and C~ vanishes
since both dy = 0 und t = 0. Equation (17) states that for any solutions of the stress and
the displacement, the difference between the values of J) and J5 obtained by evaluating J*
on any two non-intersecting contours I'y and Iy, respectively, is equal to the work done by
the non-clastic strain and the body force within region D.

Now take R, = 0. On I', the stress ficlds are then given by eqn (14). The value of J)
can be shown to be equal to the local energy release rate given by (Wu, 1987)

Ji = MLk, (18)
where L is a symmetric and positive-definite matrix defined by
L= —-7[AB '] 19
where .# denotes the imaginary part.
On the other hand. let R, — 20 so that the stresses on I'; are given by eqns (6). As

shown in Appendix C. the value of J*, is determined as

3AS 24:8-D
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Jy = L APKY — H(E™) (20)
where H(#™) is

Ha) = -5 otew 0. @y

-

Substituting eqns (18) and (21) into eqn (17) and rearranging the terms, one has

: o€y
%L.',kik,-+J‘(ﬁ%f—:- oy ;’ > d4+H@E™) = L, kPkD. (22)

The physical meaning of eqn (22) is that as the crack advances by an infinitesimal amount,
the work done by the crack extension, the body forces, and the non-elastic strains rep-
resented by the first and the second terms, together with the residual energy in the wake

given by the third term must be equal to the energy released by the external loading.
Substitution of eqns (11a), (11b) and (15) into eqn (22) yields

. oey ot
[L,,k‘;’—f( G =1, “‘) dA}kf,"
oey

(!)
+§L,,ks->k§’)+J(/m- off = )dA+H(e<"’)=~.o. (23)

Since k™, & and f are independent and arbitrary, it follows that

VL kK +f( 5247 _ gt a;w) dA+H@E) =0 24)
and
Lk = K&,,,, a;;,) f%%“—"—) dA @5)
or
kY =L K Guyy 825? : ﬁa"“‘) (26)

where L~ is the inverse matrix of L. Equation (26) is the main result of this section. It
represents the closed-form solutions to the problem of interest. Note that the introduction
of the wake of non-elastic strains does not explicitly affect the forms of the solutions. Given
an arbitrary distribution of non-elastic strains and/or body forces, the induced stress
intensity factors can be computed by evaluating the integrals of eqn (26). In the following
section, several applications of eqn (26) are given.

4. APPLICATIONS

4.1. Creeping materials
Because of the assumption of steady state, the non-elastic strain rates £ are given by

68( n)
ox ’

M= —g

@n

Thus
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Fig. 3. Distribution of non-elastic strains simulating martensitic transformation in ceramics.

e {n) l
;t = -2, (28)

The stress intensity factors due to the non-elastic flow are obtained by substituting eqn (28)
into eqn (26)

1 e
k= - oLy J-o,,,,s,‘,’ dd. 29)

Equation (29) is an extension of the result obtained for the quasi-static crack growth in
isotropic matcrials (Wu and Hart, 1987). In the work of Wu and Hart (1987), they found
that if the non-clastic strain ratcs are related to the stresses by a power law near the crack tip,
the stresses are characterized by an rV? singularity if the power is less than 3. Examination of
cqn (29) shows that this conclusion also holds for the anisotropic dynamic case.

4.2. Transformation toughening

For many ceramics, a mechanism of toughness enhancement is by the stress-induced
strain transformation of the contained particles (McMeeking and Evans, 1982). The strain
transformation cin be represented by a uniform distribution of non-elastic strains in the
transformation zone shown in Fig. 3. The corresponding stress intensity factors are given
by

K = — Ly, J Gy dy (30)

where c is the contour of the transformation zone front. The values of &Y' arc generally
negative for positive transformation strains. The crack tip can therefore be considered as
shielded by the surrounding transformation strains. Equation (30) indicates that the steady-
state shielding effect depends only on the front of the transformation zone.

4.3. Discrete dislocations
A discrete dislocation of Burger's vector b located at c can be described by the following
non-elastic strains on the slip plane x < ¢y, y = ¢, (Mura, 1969):

| 0 b, 0
g™ =3 b, 2b, by|H(c,—x)0(y—c3) @a3n
0 b, 0

where H is the Heaviside function and & the Dirac delta function. Differentiation of eqn
(31) with respect to x gives
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Fig. 4. A point load applied on the upper crack face.

[ 0 b 0
g™ = — Slb0 26, by oc, —x)o(v—c2). (32)
0 A O

Substituting eqn (32) into eqn (26) yields

L (%) -
Ap - qu al:th

! l
— o LM‘%[B,,B,.,’ -]b, (33

J(2n) Jo

where ¢, = ¢+ p,c,. Forstationary cracks, i.c. @ — 0, eqn (33) reduces to the result obtained
by Rice (1985) (the numerical factor of (1) ' ¥ should be corrected to [/ in Rice’s result).

4.4. Point forces
For a point force at ¢, the induced stress intensity factors are immediately given by
eyn (26) as

on,
kD =~ oy
=__,_IAAL~IW[A Bl_l_]f (34)
Jem LT e I

An interesting case arises when a point load is applied to one of the crack faces, say, the
upper face at ¢ = (=1, 0) (Fig. 4). The corresponding k™ becomes

o) = Jom L,'#[4,8.'] \{/’l. (35)
Invoking relationship (AS) shown in Appendix A
L=—-7[AB ']
egn (35) can be simplified to
kb = :/-(g;[—). (36)

This is a rcmarkable result that the stress intensity factors depend neither on the clastic
constants nor on the crack velocity. Of course, this does not imply that the energy release
rate G is not influenced. In fact, G is given by
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= éL kml\':'

PyP

1
AW (7

and L is both a function of the elasticity constants and the crack velocity.

5. CONCLUDING REMARKS

The stress intensity factors due to non-elastic strains and body forces have been derived
for a dynamically propagating crack in an anisotropic elastic body. The solutions obtained
can also be applied to the case of stationary cracks by taking the limit of the crack velocity
a to zero. The solutions are good approximations if the non-elastic strains are present near
the crack tip over a length scale in the direction perpendicular to the crack line much smaller
than the crack length and the body dimensions. As many defects can be modeled by suitable
distributions of non-elastic strains. eqn (26) can be used to investigate interactions between
a stationary or a growing crack and various defects in the vicinity of the crack tip.

With regard to the tractions applied on the crack faces, an interesting result is found
that the stress intensity factors are not affected by the elastic constants and the crack
extension velocity. A similar conclusion was reached by Barnett and Asaro (1972) for a
finite stationary crack embedded in an infinite body. The crack considered by Barnett and
Asaro (1972) was subjected to scltf-equilibrating systems of tractions on the crack faces. On
the other hand, for the case considered here, the tractions need not be self-equilibrating
and can be applied to cither one of the crack faces.

REFERENCES

Barnctt, D. M. and Asaro, R. 5. (1972). The fracture mechanics of shit-like cracks in anisotropic elastic media. J.
Mech. Phys. Solids 20, 353 366,

Budiansky, B., Hutchinson, J. W.and Lambropoulos, J. C. (1983). Continuum theory of dilatant transformation
in ceramics. Int. J. Solids Structures 19, 337-355,

Bueckner, H. F. (1970). A novel principle for the computation of stress intensity factors. Z. Angew. Math. Mech.
S0, 529 533,

Eshelby, J. D. (1957). The determination to the clastic field of an ellipsoidal inclusion, and related problems.
Proc. R. Soc. Lond. A241, 376--396.

Evans, A. G. and Heuber, A, H. (1982). Transformation toughening in ceramics | martensitic transformations in
crack-tip stress ficlds. J. Am. Ceram. Soc. 63, 241 -248.

Freund, L. B. (1980). The line plastic zone model for steady Mode 11 crack growth in an clastic -plastic material.
J. Mech. Phys. Solids 28, 49-57.

Freund, L. B. and Hutchinson, J. W. (1985). High strain-rate crack growth in rate-dependent plastic solids. J.
Mech. Phys. Solids 33, 169 -191.

McMecking, R. M. and Evans, A. G. (1982). Mcchanies of transformation toughening in brittle solids. J. Am.
Ceram. Suc. 65,242 246.

Mura, T, (1969). Mcthod of continuously distributed dislocations. In Mathematical Theory of Dislocations (Edited
by T. Mura), pp. 25 48. ASME, New York.

Rice, J. R. (1972). Some remarks on elastic crack-tip stress ficlds. fae. J. Solids Structures 8, 751 753,

Rice. J. R, (1985). Conserved integrals and energetic forees. In Fundamentals of Deformation and Fracture (Eshelby
Memorial Symposium) (Edited by B. A Bibly, K. J. Miller and J. R, Willis). Cambridge University Press,
Cambridge.

Stroh, AL N. (1962). Steady state problems in anisotropic clasticity. J. Math. Phys. 41,77 103

Wu, K.-C. (1987). On the crack-tip ficlds ol a dynamically propagating crack in an anisotropic solid. Ins. J.
Fracture, submitted for publication.

Wu, K.-C. and Hart, E. W. (1987). Steady state crack growth in clastic - viscoplastic materials. Inr. J. Fracture 33,
175 194

APPENDIX A

The procedure for determining p. A, and B is briefly outlined here. More detailed discussions can be found
in Wu (1987).
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Let
Cu,: = Q‘,
Cn/: =R,
Cor =T,

g

For simplicity, p will be used to denote any one of the components of p. The values of p are determined by solving
the following eigenvalue problem:

[Q~pd*l+(R+RT)p+Tp'la=0 (Al)

where Lis the unity matrix, R7 is the transpose of R and a is the eigenvector associated with p. The condition of
non-trivial solutions of a gives

det [Q-pd* I+ (R+RT)p+Tp’] = 0. (A2)
Equation (A2) is a sextic equation in p. It can be shown (Stroh. 1962) that for subsonic motion, the roots are
complex. Since the coefficients of eqn (A2) are real, it follows that the roots of p must appear as two sets of
complex numbers, one set being conjugate to the other. If one denotes p,. x = 1.2, 3, as the eigenvalues for which
the imaginary parts are positive, matrix A is given by

A =[a,a.a)] (A3)

where &, is the eigenvector corresponding to p,. Matrix B is related to A by

B, =(R,+p,T,))4,, (nosumon x). (A3)
Matrix L appearing in eqn (18) is given by

L=~J[AB-]. (AS)

APPENDIX B

The derivation of eqn (10) for the residual stress o' is given here. Since from egn (9b), o/ =0, it is oaly

necessary to determine o7,

By expressing the clastic strain as the diflerence between the total strain and the non-clastic strain, eqn (3)
becomes
6, = Culeg—el'). (BI)
With eyn (2), eqn (B1) can be further written as
g, = Cuu(“A,l"fZYI” - (B2)
As x - — o, conditions (Ya) hold and u — u'?, £ ~ ", Thus
o)) = Cuxtiy — C, iy (B3)
The traction-free conditions require
Coauattly — Cyfly = 0. (B4)
Introducing T, = Cu1, 4, is determined as
upy = T, Cy bl (B3)

Equation (10) is obtained by substituting eqn (BS) into ¢yn (B3).

APPENDIX C
From eqns (6), the stresses far removed from the crack tip are given by
o= a(-)+”(r).
The corresponding clastic strain energy density function W= can be expressed as

W* = lo,e,
) ) )
= (o1 +0[")(el] +el})

= lolell + lalell +alflel, (9]
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Since the stress ¢'” satisfies eqns (9a) and (9b), eqn (C1) can be further simplified into the following form :

au(-)
= {oWeld —loWaW + 0} —— g (C2)

In arriving at eqn (C2), relation (8¢c) has been utilized. The kinetic energy density T is given by

Ju; Ou,
T=14 Pax 6\" €3
With eqns (6b) and (9a), one has
Su, c’u"’
ox T ox €4
Thus
Su' oul®
T=lo5c 35 ©9)
One also has
Ou, oul®
"0 b ox
oul™
= (% 4 py
(@® + 47 ax
e (a) a“(-)
(x) o) d
= [ &t +ai'n, Ix (C6)
With eqns (C2). (C5) and (C6), J is given by
au(-) Dll(" u'® o a“(-l au(-)
- (n) (a} - pla} ‘_ (03 5t} n_ 7t —y e
J5 J'r,[(ia“ ey +ip = e i)x)d 0 55 d1]+J‘.m!a.z, dy+J;’(a,, Ix dy—-a¥n, P dl).
(o))

The first integral on the right-hand side of eqn (C7) is the sume as eqn (18) except that k is now replaced by k),

Le.
) (a) A, .(a) 7 {a)
J; [(!a};’e17'+1 ‘gr '; )d —f g dl]= JL, k. (C8)

The second integral is defined as

- %I afE dy = HE®). (©9)

-0

The last integral vanishes as n, d/ = dy. The final form for J4 is thus given by eqn (20).



