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STRESS INTENSITY FACTORS DUE TO NON­
ELASTIC STRAINS AND BODY FORCES FOR

STEADY DYNAMIC CRACK EXTENSION IN AN
ANISOTROPIC ELASTIC MATERIAL
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Instituh: of Applied Mt"Chanics. National Taiwan University. Taipei. Taiwan. Republic of China

(R"cl'in'd 15 Sep'emher 1987; in rt1'ised jim" :!4 March 1988)

Abstract-E~plicit solutions of the stress intensity factors due to non-elastic strains and ~x1y forces
are obtained for a crack extending dynamically at steady state through an anisotropic elastic body.
The e~amplesof non-elastic strains include thermal e~pansion. phase transformation. initial strains.
plastic strains. etc. Specific results are given for creeping materials. a uniform distrihution of
transformation strains. and discrete dislocations. It is shown that the stress intensity factors of
tractions applied on the crack faces are independent (,f the crack velocity and the elastic constants.

I. INTRODUCTION

In this papcr strcss intcnsity factors due to non-elastic strains and hody forccs arc derivcd
for a dynamic crack in a lincar anisotropic elastic hody. The term "non-clastic strain" is
equivalent to the stress-free transformation strain introduced by Eshclby (llJ57). f lowevcr.
non-clastic strain is adopted here in a broader context to denote such strains as thermal
strain. transformation strain. plastic strain. and mislit strain. A characteristic feature of
non-clastic strains is that they can all be expressed as the dilli.:rence between a total strain
and an clastic strain. The total strains arc derived from continuous displacements while the
clastic strains arc related to the stresses through Hooke's law. As was illustrated by Eshclby
(1957). the presence of such non-clastic strains in an elastic body causes ~I self-equilibrated
internal stress or self-stress to occur. One may therefore regard non-elastic strains as sources
of self-stress in an elastic body.

If a growing crack exists in a body containing non-elastic strains. the crack tip would
be loaded by the self-stress due to the non-elastic strains in addition to the stress applied
by the external loading. Under appropriate conditions regarding the distributions of non­
elastic stmins which will be discussed in the sequel, the self-stresses exhibit the universal
crack-tip fields associated with a crack propagating through a linear elastic material. The
crack-tip self-stress fields are characterized by a stress singularity of r l

/
2

, r being the radial
distance from the moving crack tip and by the stress intensity factors. The stress intensity
factors ~Ire functions of the non-elastic strains and are important parameters in describing
the interactions between the non-elastic strains and the crack tip. For example. if the non­
elastic strains are identified as the transformation strains due to phase transformation of
zirconia particles in a ceramic matrix, the stress intensity factors represent the apparent
toughness enhancement of the zirconia particles (Evans and Heuber, 1982; Budiansky el

al.. IlJ10). In the c:lse of plastic strains, the stress intensity factors characterize the stress
rclid"crfccts by plastic !lowing (Wu and Hart, IlJS7; Freund and Hutchinson. 19R5).

In the aforementioned analyses, the derivations arc either based on the application of
the weight function method of Bueckner (1970) and Rice (1972). or by din.'ct stress cal­
culations. Furthermore. almost all the available results arc applicable to quasi-static crack
growth in an isotropic solid. The objective of the present study is to obtain general explicit
expressions of the stress intensity factors due to non-clastic strains that arc valid for dynamic
crack extension through an anisotropic material. The stress intensity factors due to body
forces arc also considered since the derivation involved is essentially the same. The deri­
vation will be carried out without solving the complete self-stresses due to the non-clastic
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Fig. 1. A crack propagating dynamically at steady state in the presence of non-elastic strains and
body forces.

strains and the body forces. Instead, the energy balance of the system containing the crack,
the non-elastic strains. and the body forces is utilized to yield the solutions.

The plan of the paper is as follows. In Section 2, the underlying assumptions and the
fonnulation of the problem concerned are given. The derivation of the stress intensity
factors is shown in Section 3. Specific results are given in Section 4 for creeping materials,
a uniform distribution of transformation strains. discrete dislocations and a point force
acting on the crack face.

2. PROBLEM STATEMENT

In the following discussions, the summation convention over repeated indices is
adopted unless otherwise noted. All indices mnge from I to 3.

In this study, it is assumed that the body forces arc distributed near the tip of a
dynamically extending cmck in a region with dimensions much smaller than the crack
length. For non-clastic strains, however. the assumption is slightly modified. The non­
elastic stmins arc assumed to exist in a region extending along the crack flanks. The height
of the zone of non-clastic strains is assumed to be small compared with the crack length.
This assumption for the non-elastic strains stems from the concept of "small scale trans­
formation" (Budiunsky et al., 1983) and "small scale creeping" (Wu and Hart, 1987).
Under these conditions, a wake of non-zero non-elastic strains is left behind the advancing
crack tip. The body forces and the non-clastic strains are further assumed to translate with
the crack tip at steady state. Under such assumptions, the problem can be formulated as a
semi-infinite crack extending dynamically at velocity tj in an infinite body as shown in Fig.
I, where a moving coordinate system (x, y) is attached to the crack tip and the crack is
assumed to coincide with the negative x-axis. The non-elastic strain, 8(n), and the body force,
r, in the cracked body are functions of x and y such that with respect to an observer at the
moving crack tip the distributions remain unchanged. The magnitude of the body forces
approaches zero as , -+ rL. The magnitude of the non-elastic strains also approaches zero
as , -+ 00 except behind the crack at x -+ - 00 where the non-elastic strains may be nonzero
for finite values of y.

In the context of the theory for small defonnation, the total strain 8, is expressed as
the sum of the non-elastic strain 8(n) and the elastic strain e. Namely

(I)

where the total strain is given by

(2)

where u is the displacement and a comma denotes differentiation. Corresponding to the
clastic deformation, a stress. a. is generated according to Hooke's law
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where C is the elasticity tensor. The stresses also satisfy the equilibrium equations
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(3)

(4)

where p is the density. and the term on the right-hand side represents the inertial force.
Equations (I )-(4) constitute the set of governing equations for the elasticity problem of
determining the stresses and the displacements for giren distributions of non-elastic strains
and body forces. The set of equations must be supplemented by the traction-free conditions
on the crack faces

(5)

and appropriate far-field conditions. Consistent with the assumptions stated previously, the
stress remote from the crack tip is taken as (Freund. 1980; Budiansky et al., 1983; Wu and
Hart. (987)

(6a)

where n C11 is the applied singular stress field for a dynamic crack in an clastic anisotropic
material subject to the same cxternalloading but neglecting the body forces and non-clastic
strains and nlr! is the residual stress due to the non-vanishing non-clastic strains in the wake.
The corresponding f,lr-/icid displacement can be expressed as

(6b)

where u("! is the displacement for n(a! and u(r! is the displacement for air). The applied singular
stress n("! is given as (Wu. 1(87)

where a is given by

ad., = J(i1t-)9f'[(Pti~A"-P>B,,)B~' )=J
a,~" = JA;) .~[ B,.B.~ I ~};J.

(7)

(8a)

(8b)

In eqns (8a) and (8b) A, B arc complex matrices and p is a complex vector determined by
the elasticity constants; =. = x+ ip.y, ~ varies from I to 3 and;Jt denotes the real part. The
procedure for determining A. B, and p from the elasticity constants can be found in
Appendix A. The applied stress intensity factor k1a) is determined for the actual geometry
of the cmcked body at a given external load in the absence of the body forces and the non­
elastic strains. Note that since the applied stress is obtained by disregarding the non-elastic
strains. the clastic strain c(a/ associated with the applied stress is the same as the total strain,
i.e.

(8c)

The residual stress n lrl is determined by the following conditions:



Sill'

ex
=0 (9al

(9bl

Equation (9a) is imposed to insure the satisfaction of the steady-state conditions as
x -- -x for the displacements u'" associated with the residual stresses. The residual
stresses consistent with the above conditions at x -- - x can be shown to be

( 10)

where Tp1 = Cp~/" and T- 1 is the inverse matrix of T. £1"1(.1') is the non-elastic strain as
x -- - x. The derivation of eqn (10) is given in Appendix B. Inspection of eqns (I)
and (4) reveals that the existence of the remote stress fields (6a) implies that the non-elastic
strains and the body forces must vanish faster than r I" and r' ~. respectively, as r -- x
except x -- -x. As x -- - x. the non-elastic strains may be nonzero for tlnite values of
y but must decay to zero faster than 1.1'1 I ~ as y -- ± x,.

Note that the stresses and the displacements of the problem outlined above are com­
binations of linear functions of the clastic stress intensity factor k lal

, the non-clastic strain
(.Inl. and the blldy force, f. The stresses and the displacements can thus be expressed as

( Ila)

(II h)

where lI'al and /1l
a

, an; the displacement and the stress due to k("· only and u"· and /11') arc
the displacement and the stress induced hy the non-clastic strains and the hody forces. By
definition. the stress /11.1) is the stress in the ahsence of the non-elastic strains and the hody
forces and therefore is the same as the clastic singular field given hy el/n (7). The dis­
placement assOl;iated with the elastic singular stress ficld, ul

"', is given as (Wu, [l)X7)

where

Ii", = J(D.JP[AaB,q'J:,I.

( 12)

( 13)

The problem one is concerned with here is that for whieh the stresses ncar the crack
tip have the same form as eqn (7) except that the amplitude will in general be ditferent, i.e.

(14)

where k is the local stress intensity factor. The existence of the local crack-tip tldos requires
that the non-elastic strains and the body forces become unbounded morc slowly than r '"
and r· )i~. respectively. as r -+ O. Equations (1Ia) and (14) imply that as r -+ 0, the stress
induccd by thc non-el,lstic stmins and body forces ai" also has the form of eqn (7) with thc
amplitudc k(') given by

( 15)

Thc objective is to dctermine the dynamic stress intensity factor kl'l due to the non­
elastic strains and the body forces. Of course the objective can be accomplished by going
through the tedious process of deriving the complete stress fields from the governing
equations and analyzing the asymptotic behavior of the stresses near the crack tip. One
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Fig. 1. The contour r = r I v r: V C' v C -.
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shall. however. adopt a simpler approach that allows the stress intensity factors to be
obtained without actually solving the governing equations.

3. STRESS INTENSITY FACTORS DUE TO NON·ELASTIC STRAINS AND BODY FORCES

Consider a contour integral l' dctined hy

r[ (1/1 ]
l' = Jr (~Ve + T) dy - " (1.; dl ( 16)

where we is the clastic str.tin energy density. T the kinetic energy density, and t the traction
on r. The integral l' is an e:<tended form of the path integral introduced for quasi-static
c.:rac.:k growth in c1astic.:visc.:oplastic materials (Wu und lI.trt. 19X7). A similar integrul was
proposed hy Freunt.! and Hutchinson (llJX5) by replacing the clastic strain energy density
with the total strain energy density. Let r = r I u r 1 u C+ U C be the path us shown in
!"ig. 2. where 1', and r 1 arc c.:in;ular paths with radii U, und U2 and C' and C arc the
upper ant.! the lower crack faces hetween R 1 and R 2• Applying the t.!ivergence theorem to
eqn (16) and enforc.:ingeqns (I) and (4) gives

( 17)

where D is the region houndet.! by r und J', and 1'1 arc the values of l' evaluated over r,
and r l' respectively. in a counterclockwise sense. Integration over C+ and C- vanishes
since both dy = 0 and t = O. Equation (17) states that for any solutions of the stress and
the displacement, the difference between the values of 1'1 and J 2obtained by evaluating l'
on any two non-intersecting contours r I and r 1. respectively, is equal to the work done by
the non-elastic strain and the body force within region D.

Now take R, - O. On r l the stress tiekls ure then given by eqn (14). The value of 1'1
can be shown to be equal to the local energy release rate given by (Wu, 1987)

where L is a symmetric and positive-definite matrix dctined by

L = -f[AB "1

( 18)

( 19)

where .1" denotes the imaginary part.
On the other hand. let R1 -"Xi so that the stresses on r: are given by eqns (6). As

shown in Appendix C. the value of J 2is determined as
'AS l4:I-O
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1'2 = ~Lijkla) k~a) - H(8'n)

If""H(8'D) = - - O'~r) £in) dy
2

1111 •
-00

(20)

(21)

Substituting eqns (18) and (21) into eqn (17) and rearranging the terms, one has

(22)

The physical meaning of eqn (22) is that as the crack advances by an infinitesimal amount,
the work done by the crack extension, the body forces, and the non-elastic strains rep­
resented by the first and the second terms. together with the residual energy in the wake
given by the third term must be equal to the energy released by the external loading.
Substitution ofeqns (lla), (lIb) and (15) into eqn (22) yields

[
L kls) - f(a as~j) _ r aUlq) dA]kla)

P'l p Ijq ax II ax 'I

(23)

Since k la), .'n) and f are independent and arbitrary, it follows that

and

or

f( :I In) a' ),s) ,uelj ulq
Lpqkp = 0'1)'1 ox - j; iii dA

kIt) = L -I f(' aslj) _ r aulq) dA
p p" O'lj" oX II ox

(24)

(25)

(26)

where L - 1 is the inverse matrix of L. Equation (26) is the main result of this section. It
represents the closed-form solutions to the problem of interest. Note that the introduction
of the wake of non-elastic strains does not explicitly affect the forms of the solutions. Given
an arbitrary distribution of non-elastic strains and/or body forces, the induced stress
intensity factors can be computed by evaluating the integrals of eqn (26). In the following
section. several applications of eqn (26) are given.

4. APPLlCAnONS

4.1. Creeping materials
Because of the assumption of steady state. the non-elastic strain rates 8,n) are given by

Thus

Ogln)
8,n) = -a-.

ax (27)
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Fig. 3. Distribution of non-elastic strains simulating martensitic transformation in ceramics.

cs(n) I__ = __ li(nl

ax a
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(28)

The stress intensity factors due to the non-elastic flow are obtained by substituting eqn (28)
into eqn (26)

k(') = - ~ L - I fa g(n} dA
P ,i pq IJI( IJ • (29)

Equation (29) is an extension of the result obtained for the quasi-static crack growth in
isotropic materials (Wu and Hart. 1987). In the work of Wu and Hart (1987), they found
that if the non-clastic strain rutes arc related to the stresses by a power law ncar the crack tip,
the stresses arc characterized by an rl/z singularity if the power is less than 3. Examination of
cqn (29) shows that this conclusion .llso holds for the anisotropic dynamic case.

4.2. Transformation toughening
For many ceramics, a meeh.mism of toughness enhancement is by the stress-induced

strain transformation of the contained particles (McMeeking and Evans, 1982). The strain
transformation can be represented by a uniform distribution of non-clastic strains in the
transformation zone shown in Fig. 3. The corresponding stress intensity factors are given
by

k(') = - L - Ie(nl1a dy
P PI( IJ IJI(

('

(30)

where c is the contour of the transformation zone front. The values of k~" are generally
negative for positive transformation strains. The crack tip can therefore be considered as
shielded by the surrounding transformation strains. Equation (30) indicates that the steady­
state shielding effect depends only on the front of the transformation zone.

4.3. Discrete dislocations
A discrete dislocation of Burger's vector b located at c can be described by the following

non-elastic strains on the slip plane x ~ c" y = Cz (Mura, 1969):

(31)

where H is the Heaviside function and J the Dirac delta function. Differentiation of eqn
(31) with respect to x gives
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Fig. 4. A point load applied on the upper crack face.

(32)

Substituting eqn (32) into eqn (26) yields

(33)

whcrc(', = (', +/,,(":. For stationary cracks, i.e. ti -+ 0,C4n (33) reduces to the result obtained
by Rice (19X5) (the numerical f~lctor of (n) I: should be corrected to In in Rice's result).

4.4. Puint jim'('J
For a point force at c, the induced stress intensity l:tctors ,Ire immediately given by

eqn (26) as

(34)

An inten:sting case arises when a point load is applied to one of the crack faces, say, the
upper facc at c = (-1,0) (Fig. 4). The corresponding kh

) becomes

(35)

Invoking relationship (AS) shown in Appendix A

L = - ..f[AB 'J

c4n (35) can be simplified to

k~'l = /,,_.
../(2n/)

(36)

This is a remarkable result that the stress intensity factors depend neither on the clastic
constants nor on the crack velocity. Of course, this does not imply that the energy release
rate G is not influenced. In fact, G is given by
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G = ~Lrqk~"k~"

(37)

and L is both a function of the elasticity constants and the crack velocity.

5. CONCLUDING REMARKS

The stress intensity factors due to non-elastic strains and body forces have been derived
for a dynamically propagating crack in an anisotropic elastic body. The solutions obtained
can also be applied to the case of stationary cracks by taking the limit of the crack velocity
ti to zero. The solutions are good approximations if the non-elastic strains are present near
the crack tip over a length scale in the direction perpendicular to the crack line much smaller
than the crack length and the body dimensions. As many defects can be modeled by suitable
distributions of non-elastic strains. eqn (26) can be used to investigate interactions between
a stationary or a growing crack and various defects in the vicinity of the crack tip.

With regard to the tractions applied on the crack faces. an interesting result is found
that the stress intensity factors are not affected by the elastic constants and the crack
extension velocity. A similar conclusion was reached by Barnett and Asaro (19n) for a
tinite stationary crack embedded in an infinite body. The crack considered by Barnett and
Asaro (Il}n) was subjected to self-equilibrating systems of tractions on the crack faces. On
the other hand. for the case considered here. the tractions need not be self-equilibrating
and can be applied to either one of the crack faces.
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APPENDIX A

The procedure for determining p. A. and B is briefly outlined here. More detailed discussions can be founu
in Wu (19117).
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C,,!, =Q.!

Cil/::=Ru

For simplicity, p will be used to denote anyone of the components of p. The values ofp are determined by solving
the following eigenvalue problem:

[Q-pci~I+(R+RT)p+Tp:Ja= 0 (AI)

where I is the unity matrilt. RT is the transpose of R and a is the eigenvector ass<x';ated with p. The condition of
non-trivial solutions of a gives

(A2)

Equation (A2) is a selttic equation in p. It can be shown (Stroh. 196~) that for subsonic motion. the roots are
complelt. Since the coefficients of eqn (A2) are real. it follows that the roots of p must appear as two sets of
complelt numbers. one set being conjugate to the other. If one denotes P•• :x = I. 2. 3, as the eigenvalues for which
the imaginary parts are positive, matri:'l A is given by

A = [a"a~,a.]

where a, is the eigenvector corresponding to P•. Matrilt B is related to A by

B.. = (RI/+P.T,/)"'i' (no sum on :X).

Malrilt L appearing in eqn (18) is given hy

APPENDIX B

(A3)

(A4)

(AS)

The deriv:ltion of eqn (10) for the residual stress ,,'" is given here. Since from eqn (9b), ");' = 0, it is only
necessary to determine 11:;'.

By eltpressing the clastic strain as the dillcrence between the total strain and the non-clastic strain. eqn (3)
becomes

(BI)

With eqn (2), cqn (Bl) can be further writtcn as

(B2)

As x -. - w, conditions (9a) hold and u-. u'''. 8(n' -. 8'n,. Thus

(B3)

The traction-frec: conditions require

(B4)

Introducing T,. = Cllil , U,.l is determined as

(B5)

Equation (10) is obtained by substituting c:qn (B5) into eqn (B3).

APPENDIX C

From eqns (6). the stresses far removed from the crack tip are given by

The corresponding c:Iastic strain energy density function W- can be cltpressed as

W' = !a/le'l

= (al;' +"); ')(e:; ,+e)!')

== !u:;'e:;' + !l'1:;'e:? +a:;tel;l. (Cl)
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Since the stress ,,") satisfies cqns (9a) and (9b). eqn (CI) can be further simplified into the foUowing fonn:

cria,
W" = 100,a't,a' - !O'I"~') +0""-'-1 'J I) • II /1 II AX .

In arriving at eqn (C2). relation (Sc) has been utilized. The kinetic energy density T is given by

T= t cu, cu,
.P ex C.'C·

With eqns (6b) and (9a). one has

cu, cula)

iJ.'C=~·

Thus

cula' cula)
T=~p-' _'.

C.'C ax

One also has

With eqns (C21. (CS) and (C61. J; is given by

815

(C2)

(C3)

(C4)

(CS)

(C6)

(C7)

The first integral on the right-hand side of eqn (C7) is thc same as cqn (18) except that k is now replaced by k'o,.
I.C.

J[( IJ '0' 1
1

U
10
') ~ (., ]10"0'..(0'+ \p~ -'-' dY_/'o,~ dl = lL kto'k10,

f, 'I " • iJx iJx 'iJx 'I' I'

The second integral is defined as

If"- - O'lr,i'" dy - H(r")
2 'I II - .

_.",

The last integral vanishes as "I dl = dy. The final form for 1': is thus given by eqn (20).

(Cll)

(C9)


